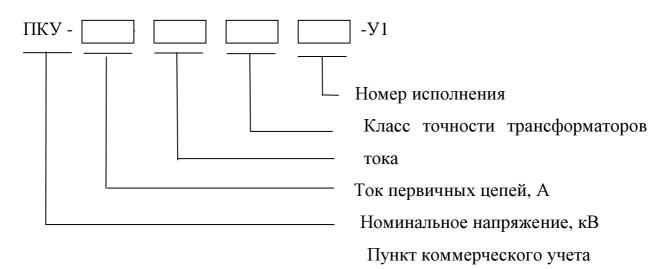


429500, Чувашская Республика, Чебоксарский район, рп. Кугеси, Монтажный проезд, дом 2 http://www.chze.ru e-mail: info@chze.ru тел.: (8352) 64-17-79, 64-17-89, 38-49-89

ПУНКТ КОММЕРЧЕСКОГО УЧЕТА 6-10 кВ наружной установки на опоры воздушных линий электропередачи ПКУ – 6(10) У1

Техническое описание


1.1. Назначение изделия.

1.1.1. Пункты коммерческого учета (далее ПКУ) предназначены для работы воздушных распределительных сетях трехфазного переменного тока частотой 50 Гц и номинальным напряжением до 10 кВ и используются для коммерческого (расчетного) учета потребляемой активной и реактивной электрической энергии.

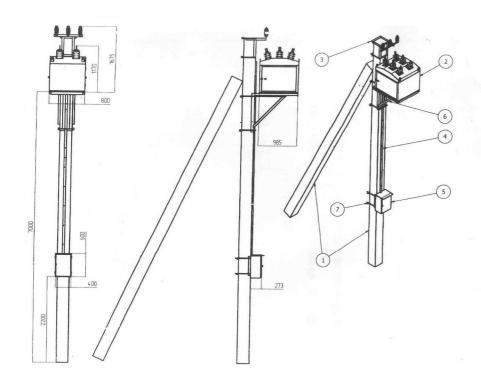
ПКУ может быть использован в качестве:

- Пункта коммерческого учета электроэнергии на границе балансовой принадлежности сети в случае, если граница проходит по стороне 6(10) кВ.
- Пункта коммерческого учета электроэнергии на границе балансовой принадлежности сети при подключении новых потребителей.
- Пункта контроля несанкционированного потребления электрической энергии потребителем.
- Пункта коммерческого учета электроэнергии на границе балансовой принадлежности сети между сетями различных собственников.

1.1.2.Структура условного обозначения ПКУ

Пример записи при заказе ПКУ на номинальное напряжение 10 кВ, номинальный ток первичных цепей 300 А, класс точности трансформаторов тока 0,5, номер исполнения 02:

«Пункт коммерческого учета ПКУ - 10 - 300 - 0,5 - 02 У1»


1.1.3.Состав изделия.

ПКУ состоит из следующих элементов:

- высоковольтный модуль (далее ВМ);
- шкаф учета (далее ШУ);
- кабель соединительный;
- труба защитная.

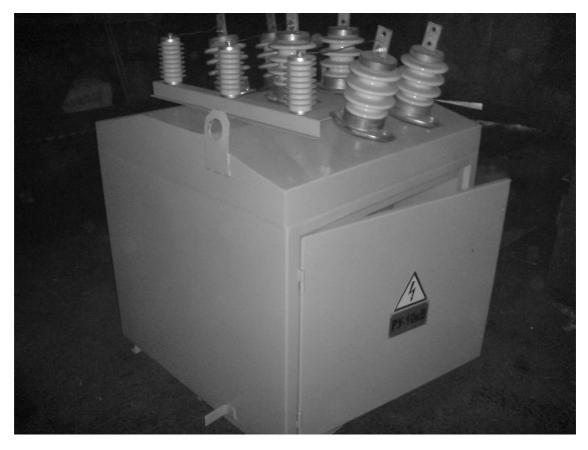
Для установки ПКУ на опору воздушной ЛЭП предусмотрен монтажный комплект (далее - МК) в составе:

- крепление ВМ на опору;
- крепление ШУ на опору;
- крепление кабеля соединительного.
- комплект установки ОПН (поставляется по отдельному заказу)

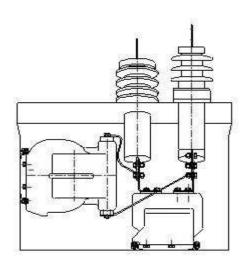
Спецификация		
Позиция	Наименование	
1	Опора	
2	Высоковольтный модуль	
3	Монтажнык комплект	
4	Короб кабельный	
5	Шкаф управления	
6	Конструкция под ПКУ	
7	Монтажный комплект	

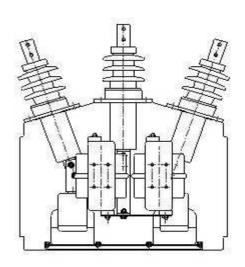
1.2. Технические характеристики.

- 1.2.1. ПКУ предназначен для работы в условиях климатического исполнения У, категория размещения 1, тип окружающей изделие атмосферы гр. IV по ГОСТ 9920, при этом температура окружающей среды составляет от минус 45° С до плюс 50°С.
- 1.2.2. ПКУ предназначен для работы на высоте до 1000 м над уровнем моря и в части воздействия климатических факторов внешней среды удовлетворяют требованиям ГОСТ 15150.
- 1.2.3. ПКУ рассчитан на применение в I V ветровых районах и в I IV районах по гололёду и выдерживают механические воздействия на уровне M2 по ГОСТ 17516.1.
- 1.2.4.Окружающая среда не взрывоопасная, не содержащая газов, испарений, химических соединений, токопроводящей пыли в концентрациях, снижающих параметры изделия в недопустимых пределах.
- 1.2.5.Электрическая прочность изоляции главных и вспомогательных цепей шкафа ПКУ соответствует ГОСТ 1516.3 и выдерживает воздействия:
- а) испытательного переменного одноминутного напряжения 50 Гц (действующее значение)
- в сухом состоянии 32(42) кВ (соответственно для рабочего напряжения 6 и 10 кВ, см. табл.1);
 - под дождём 20(28) кВ.
 - б) грозового импульса (полного) 60(75) кВ.
- 1.2.6.В отношении нагрева в продолжительном режиме работы ПКУ соответствуют требованиям ГОСТ 8024.
 - 1.2.7.Основные параметры ПКУ приведены в таблице 2.

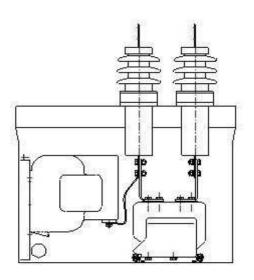

Таблица 2. Основные параметры и характеристики ПКУ.

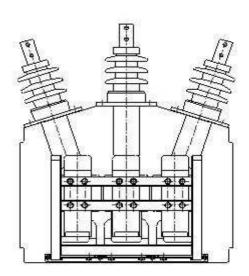
№	Наименование параметра	Значение параметра
1	Номинальное напряжение, кВ	6(10)
2	Наибольшее рабочее напряжение, кВ	7,2 (12)
3	Номинальная частота, Гц	50
4	Номинальный ток главных цепей, А	5; 20; 50;150; 200A; 300
5	Номинальный ток вторичных цепей, А	5
6	Номинальное напряжение вторичных цепей, В	100
7	Уровень изоляции по ГОСТ 1516.1	Нормальная
8	Класс точности прибора учета	0,5; 0,5S
9	Ток термической стойкости, кА при номинальном первичном токе трансформаторов тока, А	
	5 20 50 100 150 200	0,4 1,56 5 10 12,5 12,5
	300	12,5
10	Номинальный ток электродинамической стойкости главных цепей, кА при нормальном первичном токе трансформаторов тока	
	5	1
	20 50 100 150 200 300	3,93 12,8 25,5 31,8 31,8 31,8
11	Степень защиты по ГОСТ 14254*	IP54


Степень защиты шкафа ШУ соответствует состоянию при открытой внешней двери шкафа и закрытой внутренней двери, при закрытой внешней двери степень защиты шкафа ШУ соответствует IP65 по ГОСТ 14254.


1.4. Высоковольтный модуль.

1. 4.1 Внешний вид высоковольтного модуля (далее ВМ) представлен на рис. 1.




- 1.4.2 Корпус ВМ представляет собой сварную металлическую конструкцию с коррозионностойким покрытием, внутри которого установлены трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Трансформаторы тока и трансформаторы напряжения установлены на специальных площадках, имеющих болтовые соединения с корпусом высоковольтного модуля. Это позволяет в случае необходимости легко демонтировать каждый трансформатор по отдельности.
 - 1.4.1. Для ВМ ПКУ предусмотрены два варианта исполнения:
- схема исполнения с двумя трансформаторами тока (TT) и двумя трансформаторами напряжения (TH),

- схема исполнения с тремя трансформаторами тока и тремя трансформаторами напряжения,

1.4.4. Вне зависимости от используемой схемы, применяются трансформаторы тока ТОЛ-10-1. В соответствии с опросным листом, возможна установка трансформаторов с классом точности 0.5 и выше по ГОСТ 7746.

1.4.5. В качестве трансформаторов напряжения, при схеме 2TT/2TH используются незаземляемые трансформаторы напряжения со встроенными защитными предохранителями 3HOЛП-6(10).

При схеме 3TT/3TH используются трехфазная антирезонансная группа трансформаторов напряжения 3*3HOЛП. Антирезонансная группа устойчива к феррорезонансу и (или) воздействию перемежающейся дуги в случае замыкания одной из фаз сети на землю.

1.4.6. Трансформаторы тока и напряжения, применяемые в составе высоковольтного модуля, внесены в Государственный реестр средств измерений и имеют соответствующие сертификаты соответствия. Трансформаторы имеют классы точности измерения, позволяющие их использование в системах АИИС КУЭ.

1.4.7. На боковых поверхностях корпуса предусмотрены кронштейны с отверстиями для подъема и монтажа ВМ на опоры линии электропередач. Диаметр отверстия монтажного рыма составляет 25 мм.

Конструктивно верхняя часть ВМ выполнена таким образом, что препятствует образованию снежных шапок.

1.4.8. Для подключения к линии электропередач в верхней части корпуса ВМ установлены проходные изоляторы типа ИПУ-10/630. В случае использования схемы 2ТТ/2ТН корпус ВМ имеет пять проходных изоляторов, а в случае использования схемы 3ТТ/3ТН - шесть проходных изоляторов. Изоляторы маркируются цветными полосами:

Фаза А - красная

Фаза В – зеленая

Фаза С - желтая

1.4.9. Токоведущие шины BM представляют собой алюминиевые проводники сечением 5х50 мм.

- 1.4.10.В нижней части корпуса имеется бобышка для заземления ВМ.
- 1.4.11. С целью обеспечения доступа к установленному в BM оборудованию, на боковых стенках корпуса предусмотрены двери.
- 1.4.12. В нижней части корпуса имеется отверстие с установленным гермовводом предназначенное для вывода вторичных цепей ВМ на соединительный кабель к шкафу учета.
- 1.4.13. Внутри ВМ установлена колодка зажимов для подключения соединительного кабеля и вторичных цепей высоковольтного модуля. Выводы ко лодки зажимов подключаются согласно электрической схеме ВМ (см. рис. 2).
- 1.4.14. Схема электрическая принципиальная ВМ для варианта 2ТТ-2ТН приведена на рис.2а, а схема электрическая принципиальная ВМ для варианта 3ТТ+3ТН приведена на рис.26, предназначенное для вывода вторичных цепей ВМ на соединительный кабель к шкафу учета.

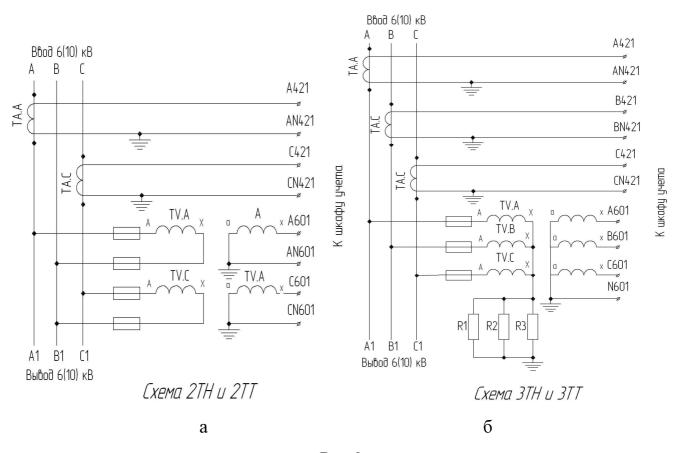
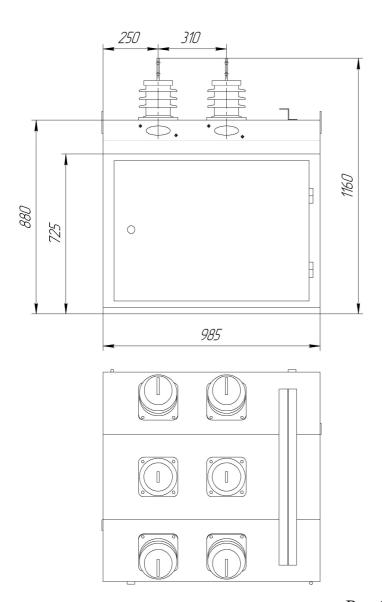



Рис.2

1.4.15. Габаритные размеры ВМ ПКУ приведены на рис.3.

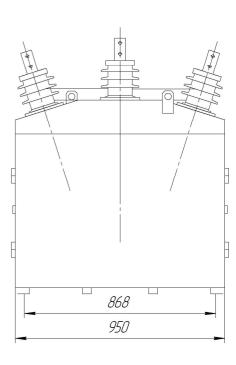
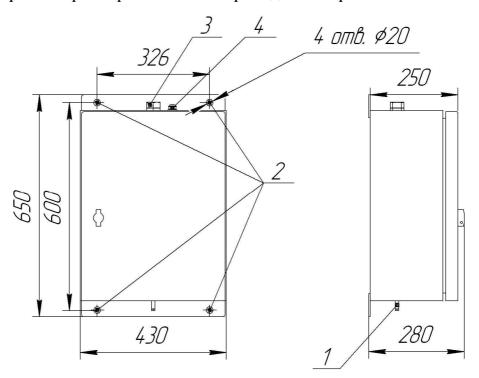


Рис.3

1.5. Шкаф учета.

1.5.1. Внешний вид и расположение основных приборов шкафа учета (далее ШУ) представлено на рис. 4.


Рис.4

- 1.5.2. Шкаф учета (далее ШУ) представляет собой сварной металлический корпус с коррозионностойким покрытием. Внутри шкафа на дин-рейках смонтировано измерительное оборудование. Конструкцией ШУ предусмотрена возможность установки дополнительного оборудования в зависимости от исполнения ПКУ (см. таблицу 1).
- 1.5.3. В конструкции ШУ предусмотрено наличие двух дверей внешней и внутренней. Внешняя дверь выполнена глухой и оснащена специальным замком,

предусматривающим закрытие дополнительным навесным замком (навесной замок в комплект поставки не входит). Внутренняя дверь имеет окно для визуального съёма показаний счетчика и оснащена специальным замком с возможностью пломбировки. Устройство пломбировки (входит в комплект поставки) представляет собой стальную ось с отверстием и надетой на неё втулкой с отверстием. Для опломбирования двери необходимо вставить ось в отверстие в замке, на ось надеть втулку и произвести пломбировку двери с помощью любой пломбы.

Таким образом, в ШУ организована возможность двух уровней доступа к находящемуся в нём оборудованию. Первый уровень доступа (внешняя дверь) предусмотрен для визуального съёма показаний счетчика потребителем. Второй уровень доступа (внешняя и внутренняя двери) предусмотрен для обслуживающего персонала.

1.5.4. Габаритные размеры ШУ ПКУ приведены на рис.5.

- 1 Бобышка и болт заземления;
- 2 Отверстия для крепления ШУ к опоре ВЛ;
- 3 Гермоввод для соединительного кабеля;
- 4 Гермоввод для антенны модема (опционально).

- 1.5.5. Состав оборудования, входящего в ШУ:
- Счетчик электроэнергии. Установка конкретной модели счетчика производится в соответствии с опросным листом. Рекомендуется установка счетчика классом точности не ниже 0,5;
- Испытательная коробка для возможности проведения операций со счетчиком без отключения питающей линии;
- Радио или GSM-модем. Поставляется опционально, в соответствии с опросным листом. В комплект поставки входит антенна с кабелем. Антенна имеет магнитное основание для установки на верхней крышке ШУ. Для вывода антенны модема предусмотрено отверстие с установленным гермовводом в верхней части ШУ.
- Преобразователь интерфейса RS485/RS232, для обеспечения связи модема с счетчиком.
 - Модуль питания модема
- Автоматическая система обогрева. Устанавливается опционально, в случае установки GSM-модема или по требованию заказчика.

Система обогрева представляет собой нагревательный элемент и температурный датчик, который срабатывает при понижении температуры в шкафу ниже установленной, (нижний предел установки срабатывания температурного реле -5°C).

1.5.6. Схема электрическая принципиальная шкафа учета исп. 01 (см. таблицу 1) приведена на рис.6.

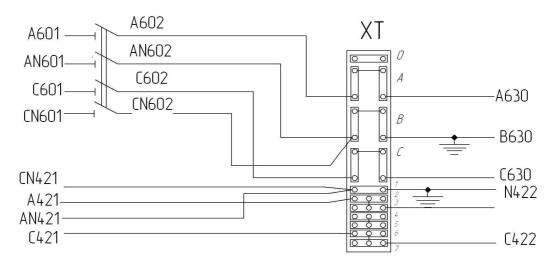


Схема подключения счетчика для 2ТТ и 2ТН

Рис.6

Схема электрическая принципиальная ШУ для ПКУ исполнения 03 приведена на рис.7.

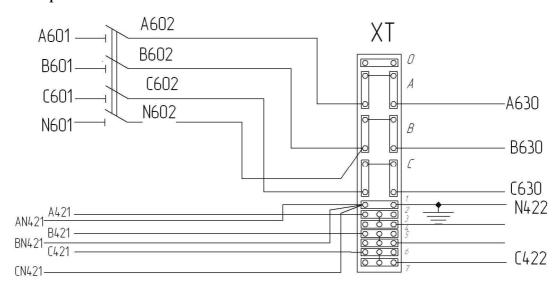


Схема подключения счетчика для ЗТТ и ЗТН

Рис.7

Схемы электрические принципиальные ШУ для ПКУ исполнений 02 и 04 зависят от состава входящего в ШУ оборудования (см. табл. 1), их интерфейсов и приводятся в паспортах на конкретные изделия.

1.6. Соединительный кабель и защитная труба.

1.6.1. Вторичные цепи ВМ и ШУ соединяются между собой с помощью соединительного кабеля СК. Соединительный кабель представляет собой жгут, находящийся в герметичном металлорукаве с ПВХ оболочкой. Кабель

поставляется длиной 6 метров. Длина металлорукава - 5 метров. Необходимая длина кабеля определяется заказчиком по месту установки ПКУ, в зависимости от высоты установки шкафа учета. В случае необходимости кабель следует обрезать до нужной длины и произвести разделку концов проводов (рисунки 2a,26,6,7).

- 1.6.2. Для защиты кабеля от внешних климатических, механических и электромагнитных воздействии в комплекте поставки ПКУ предусмотрена специальная защитная труба. Труба выполнена отдельными секциями: 1-я секция 0,5 м, 3 секции 1,0 м.
- 1.6.3. Одна из секций имеет на конце приваренный кожух, что обеспечивает дополнительную защиту мест ввода в ШУ соединительного кабеля и кабеля антенны GSM-модема от атмосферных осадков и возможных актов вандализма. Остальные секции с двух сторон имеет резьбу, соединение секций осуществляется муфтами. Соединительный кабель прокладывается внутри трубы.

Наличие отдельных секций защитной трубы позволяет регулировать высоту установки шкафа учета.

1.7. Монтажный комплект.

- 1.7.1. Для установки ПКУ на опору высоковольтной линии в комплект по ставки входит монтажный комплект.
- 1.7.2. В состав монтажного комплекта входит «Рама» (рис.8) для установки ВМ на опору ВЛ и набор крепежных элементов и метизов. Комплектность согласно упаковочной ведомости МК.

Рис.8

1.8. Комплект установки ограничителей перенапряжения.

1.8.1. Для установки ограничителей перенапряжения, по требованию заказчика в ПКУ может быть включен монтажный комплект установки ОПН.